Search results for "quantum photonic"

showing 6 items of 6 documents

Proof-of-Principle Direct Measurement of Particle Statistical Phase

2022

The symmetrization postulate in quantum mechanics is formally reflected in the appearance of an exchange phase governing the symmetry of identical-particle global states under particle swapping. Many indirect measurements of this fundamental phase have been reported thus far, but a direct observation has been achieved only recently for photons. Here, we propose a general scheme capable of directly measuring the exchange phase of any type of particle (bosons, fermions, or anyons), exploiting the operational framework of spatially localized operations and classical communication. We experimentally implement it on an all-optical platform, providing a proof of principle for different simulated …

Quantum PhotonicsIndistinguishable particleGeneral Physics and AstronomyExchange PhaseSettore FIS/03 - Fisica Della MateriaPhysical Review Applied
researchProduct

Scalable and effective multi-level entangled photon states: a promising tool to boost quantum technologies

2021

Abstract Multi-level (qudit) entangled photon states are a key resource for both fundamental physics and advanced applied science, as they can significantly boost the capabilities of novel technologies such as quantum communications, cryptography, sensing, metrology, and computing. The benefits of using photons for advanced applications draw on their unique properties: photons can propagate over long distances while preserving state coherence, and they possess multiple degrees of freedom (such as time and frequency) that allow scalable access to higher dimensional state encoding, all while maintaining low platform footprint and complexity. In the context of out-of-lab use, photon generation…

Photonintegrated and cost-efficient photonic platformComputer sciencephoton cluster statesQC1-999Context (language use)witness operatorsQuantum entanglementQuantum channelquantum photonicsphoton cluster stateRobustness (computer science)Electronic engineeringElectrical and Electronic EngineeringQCbusiness.industryexperimentally feasible entanglement characterizationPhysicsSettore ING-INF/02 - Campi Elettromagneticicomplex entanglementAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsQuantum technologyintegrated and cost-efficient photonic platformsPhotonicsbusinessquantum photonicBiotechnologyCoherence (physics)
researchProduct

Arbitrary Phase Access for Stable Fiber Interferometers

2021

Well-controlled yet practical systems that give access to interference effects are critical for established and new functionalities in ultrafast signal processing, quantum photonics, optical coherence characterization, etc. Optical fiber systems constitute a central platform for such technologies. However, harnessing optical interference in a versatile and stable manner remains technologically costly and challenging. Here, degrees of freedom native to optical fibers, i.e., polarization and frequency, are used to demonstrate an easily deployable technique for the retrieval and stabilization of the relative phase in fiber interferometric systems. The scheme gives access (without intricate dev…

Signal processingPhase (waves)Physics::Opticsquantum photonics01 natural sciencesDegrees of freedom (mechanics)Quantum entanglement010309 opticsOpticsinterferometers0103 physical sciencesAstronomical interferometerddc:530Optical fibersFiber interferometersFiber010306 general physicsOptical reference signalsPhysicsPhotonsUltrafast signal processingInterference effectsbusiness.industryOptical fiber systemsReference signalsSettore ING-INF/02 - Campi ElettromagneticiCondensed Matter PhysicsParticle beamsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsSingle-photon detectorscoherent signal processingDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikinterferometers coherent signal processing quantum photonicsbusinessInterferometric systemLaser & Photonics Reviews
researchProduct

Directly proving the bosonic nature of photons

2021

A simple yet effective optical set-up, employing two controllable, indistinguishable photons, is proven to allow a direct measurement of the exchange phase due to the bosonic particle statistics.

PhysicsParticle statisticsPhotonExchange phasePhase (waves)Quantum photonicsPhysics::OpticsPhotonSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsSimple (abstract algebra)Quantum mechanicsBosonIdentical particleNature Photonics
researchProduct

Topological protection of highly entangled non-Gaussian two-photon states

2021

Abstract We study theoretically the evolution of entangled non-Gaussian two-photon states in disordered topological lattices. Specifically, we consider spatially entangled two-photon states, modulated by Laguerre polynomials up to the 3rd order, which feature ring-shaped spatial and spectral correlation patterns. Such states are discrete analogs of photon-subtracted squeezed states, which are ubiquitous in optical quantum information processing or sensing applications. We find that, in general, a higher degree of entanglement coincides with a loss of topological protection against disorder, this is in line with previous results for Gaussian two-photon states. However, we identify a particul…

PhysicsTwo-photon statePhotonGaussianQuantum opticQuantum entanglementParameter spaceTopologyTopological protectionquantum photonicsGaussian stateSettore FIS/03 - Fisica Della Materiasymbols.namesaketopological insulatorsQuantum stateTopological insulatortwo-photon lightsymbolsLaguerre polynomialsddc:621621 Angewandte PhysikQuantum
researchProduct

Designing time and frequency entanglement for generation of high-dimensional photon cluster states

2020

The development of quantum technologies for quantum information science demands the realization and precise control of complex (multipartite and high dimensional) entangled systems on practical and scalable platforms. Quantum frequency combs (QFCs) generated via spontaneous four-wave mixing in integrated microring resonators represent a powerful tool towards this goal. They enable the generation of complex photon states within a single spatial mode as well as their manipulation using standard fiber-based telecommunication components. Here, we review recent progress in the development of QFCs, with a focus on our results that highlight their importance for the realization of complex quantum …

PhotonComputer scienceQuantum photonicsSettore ING-INF/02 - Campi Elettromagnetici02 engineering and technologyQuantum entanglementFiber photonics021001 nanoscience & nanotechnology01 natural sciences010309 opticsQuantum technologyMultipartiteQuantum stateHigh-dimensional quantum states0103 physical sciencesElectronic engineeringIntegrated nonlinear optics0210 nano-technologyQuantum information scienceQuantumQuantum computer
researchProduct